Between-trial heterogeneity in meta-analyses may be partially explained by reported design characteristics

نویسندگان

  • Kirsty M. Rhodes
  • Rebecca M. Turner
  • Jelena Savović
  • Hayley E. Jones
  • David Mawdsley
  • Julian P.T. Higgins
چکیده

OBJECTIVE We investigated the associations between risk of bias judgments from Cochrane reviews for sequence generation, allocation concealment and blinding, and between-trial heterogeneity. STUDY DESIGN AND SETTING Bayesian hierarchical models were fitted to binary data from 117 meta-analyses, to estimate the ratio λ by which heterogeneity changes for trials at high/unclear risk of bias compared with trials at low risk of bias. We estimated the proportion of between-trial heterogeneity in each meta-analysis that could be explained by the bias associated with specific design characteristics. RESULTS Univariable analyses showed that heterogeneity variances were, on average, increased among trials at high/unclear risk of bias for sequence generation (λˆ 1.14, 95% interval: 0.57-2.30) and blinding (λˆ 1.74, 95% interval: 0.85-3.47). Trials at high/unclear risk of bias for allocation concealment were on average less heterogeneous (λˆ 0.75, 95% interval: 0.35-1.61). Multivariable analyses showed that a median of 37% (95% interval: 0-71%) heterogeneity variance could be explained by trials at high/unclear risk of bias for sequence generation, allocation concealment, and/or blinding. All 95% intervals for changes in heterogeneity were wide and included the null of no difference. CONCLUSION Our interpretation of the results is limited by imprecise estimates. There is some indication that between-trial heterogeneity could be partially explained by reported design characteristics, and hence adjustment for bias could potentially improve accuracy of meta-analysis results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk of bias: a simulation study of power to detect study-level moderator effects in meta-analysis

BACKGROUND There are both theoretical and empirical reasons to believe that design and execution factors are associated with bias in controlled trials. Statistically significant moderator effects, such as the effect of trial quality on treatment effect sizes, are rarely detected in individual meta-analyses, and evidence from meta-epidemiological datasets is inconsistent. The reasons for the dis...

متن کامل

Statistical methods for assessing the influence of study characteristics on treatment effects in 'meta-epidemiological' research.

Biases in systematic reviews and meta-analyses may be examined in 'meta-epidemiological' studies, in which the influence of trial characteristics such as measures of study quality on treatment effect estimates is explored. Published studies to date have analysed data from collections of meta-analyses with binary outcomes, using logistic regression models that assume that there is no between- or...

متن کامل

How should meta-regression analyses be undertaken and interpreted?

Appropriate methods for meta-regression applied to a set of clinical trials, and the limitations and pitfalls in interpretation, are insufficiently recognized. Here we summarize recent research focusing on these issues, and consider three published examples of meta-regression in the light of this work. One principal methodological issue is that meta-regression should be weighted to take account...

متن کامل

Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data

OBJECTIVES Estimation of between-study heterogeneity is problematic in small meta-analyses. Bayesian meta-analysis is beneficial because it allows incorporation of external evidence on heterogeneity. To facilitate this, we provide empirical evidence on the likely heterogeneity between studies in meta-analyses relating to specific research settings. STUDY DESIGN AND SETTING Our analyses includ...

متن کامل

Meta-analysis of mean differences from randomized trials with nested clustering

Nesting of patients within care providers in trials of physical and talking therapies creates an additional level within the design. The statistical implications of this are analogous to those of cluster-randomised trials, except that the clustering effect interacts with treatment, leading to different ICCs across treatment arms. In some cases, the clustering effect may be restricted to one or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2018